Current practice and recommendations for advancing how human variability and susceptibility are considered in chemical risk assessment
Julia R. Varshavsky*, Swati D. G. Rayasam, Jennifer B. Sass, Daniel A. Axelrad, Carl F. Cranor, Dale Hattis, Russ Hauser, Patricia D. Koman, Emily C. Marquez, Rachel Morello‑Frosch, Catherine Oksas, Sharyle Patton, Joshua F. Robinson, Sheela Sathyanarayana, Peggy M. Shepard and Tracey J. Woodruff
A key element of risk assessment is accounting for the full range of variability in response to environmental exposures. Default dose-response methods typically assume a 10-fold difference in response to chemical exposures between average (healthy) and susceptible humans, despite evidence of wider variability. Experts and authoritative bodies support using advanced techniques to better account for human variability due to factors such as in utero or early life exposure and exposure to multiple environmental, social, and economic stressors.
This review describes: 1) sources of human variability and susceptibility in dose-response assessment, 2) existing US frameworks for addressing response variability in risk assessment; 3) key scientific inadequacies necessitating updated methods; 4) improved approaches and opportunities for better use of science; and 5) specific and quantitative recommendations to address evidence and policy needs.
Current default adjustment factors do not sufficiently capture human variability in dose-response and thus are inadequate to protect the entire population. Susceptible groups are not appropriately protected under current regulatory guidelines. Emerging tools and data sources that better account for human variability and susceptibility include probabilistic methods, genetically diverse in vivo and in vitro models, and the use of human data to capture underlying risk and/or assess combined effects from chemical and non-chemical stressors.
We recommend using updated methods and data to improve consideration of human variability and susceptibility in risk assessment, including the use of increased default human variability factors and separate adjustment factors for capturing age/life stage of development and exposure to multiple chemical and non-chemical stressors. Updated methods would result in greater transparency and protection for susceptible groups, including children, infants, people who are pregnant or nursing, people with disabilities, and those burdened by additional environmental exposures and/or social factors such as poverty and racism.